Soliton Light Wave Propagation in Fiber Bragg Grating

Authors

  • Ahmad Afif Anderson
  • Cindy Agnatasya Putri Physics Education, Faculty of Teacher Training and Education, Universitas Riau
  • Indy Diah Rachimza Physics Education, Faculty of Teacher Training and Education, Universitas Riau
  • Rita Maharani Physics Education, Faculty of Teacher Training and Education, Universitas Riau
  • Muhammad Sahal Physics Education, Faculty of Teacher Training and Education, Universitas Riau

Keywords:

Waves, Dispersion, Soliton, FBG

Abstract

Soliton is a type of light wave that can maintain its shape and speed during travel, albeit through a varied medium. Fiber Bragg Grating (FBG), on the other hand, is a structure in optical fibers with a periodic refractive index, serving as a selective filter or mirror that reflects certain wavelengths while allowing others to pass through. The combination of soliton and FBG offers great potential in improving modern optical communication systems. FBG plays an important role in controlling and stabilizing the propagation of soliton waves. With its ability to eliminate dispersion, FBG helps the soliton maintain its shape, which is essential for maintaining signal integrity during long-distance transmission. Dispersion is a phenomenon that causes the spread of light signals in optical fibers, which can result in a decrease in signal quality and data transmission speed. With FBG, this dispersion effect can be minimized, ensuring that the soliton remains unchanged throughout its journey. In the context of optical communication technology, FBG enables faster and more reliable data transmission, which is essential to meet the demand for high-speed, large-capacity communication networks. In addition, FBG can be used in laser technology and other optical devices to improve performance and efficiency.

References

Ahmad, D. (2016). SOLUSI NUMERIK PERSAMAAN KORTEWEG-DE VRIES BURGERS DENGAN METODE SPEKTRAL (Vol. 2).

Deng, B., Tournat, V., Wang, P., & Bertoldi, K. (2019). Anomalous Collisions of Elastic Vector Solitons in Mechanical Metamaterials. Physical Review Letters, 122(4). https://doi.org/10.1103/PhysRevLett.122.044101

El-Tantawy, S. A., El-Bedwehy, N. A., & Moslem, W. M. (2011). Nonlinear ion-acoustic structures in dusty plasma with superthermal electrons and positrons. Physics of Plasmas, 18(5). https://doi.org/10.1063/1.3592255

Fadhian, M. (2015). ANALISIS PERBANDINGAN PULSA GAUSSIAN DENGAN PULSA SECANT HIPERBOLIK PADA TRANSMISI SOLITON UNIVERSITAS TELKOM COMPARATIVE ANALYSIS BETWEEN GAUSSIAN PULSE AND SECANT HYPERBOLIC PULSE FOR SOLITON TRANSMISSION TELKOM UNIVERSITY.

Fadhian, M., Ir, A. H., & Pambudi, A. D. (2015). ANALISIS PERBANDINGAN PULSA GAUSSIAN DENGAN PULSA SECANT HIPERBOLIK PADA TRANSMISI SOLITON UNIVERSITAS TELKOM COMPARATIVE ANALYSIS BETWEEN GAUSSIAN PULSE AND SECANT HYPERBOLIC PULSE FOR SOLITON TRANSMISSION TELKOM UNIVERSITY.

Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15(8), 1263–1276. https://doi.org/10.1109/50.618320

James, B., & Birch, C. (2013). Simulation of Fibre Bragg Grating (FBG) Reflection Spectrums Using OptiGrating.

Lo Presti, D., Massaroni, C., Jorge Leitao, C. S., De Fatima Domingues, M., Sypabekova, M., Barrera, D., Floris, I., Massari, L., Oddo, C. M., Sales, S., Iordachita, I. I., Tosi, D., & Schena, E. (2020). Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access, 8, 156863–156888. https://doi.org/10.1109/ACCESS.2020.3019138

Lu, D., Seadawy, A. R., Wang, J., Arshad, M., & Farooq, U. (2019). Soliton solutions of the generalised third-order nonlinear Schrödinger equation by two mathematical methods and their stability. Pramana - Journal of Physics, 93(3). https://doi.org/10.1007/s12043-019-1804-5

Mahdi Hammadi, A. (2020). Simulation and Analysis of a transmission system to compensate dispersion in an optical fiber by use chirp gratings. International Journal of Engineering Research and Applications www.ijera.com, 10, 1–07. https://doi.org/10.9790/9622-1010040107

Manahan, G. G., Habib, A. F., Scherkl, P., Ullmann, D., Beaton, A., Sutherland, A., Kirwan, G., Delinikolas, P., Heinemann, T., Altuijri, R., Knetsch, A., Karger, O., Cook, N. M., Bruhwiler, D. L., Sheng, Z. M., Rosenzweig, J. B., & Hidding, B. (2019). Advanced schemes for underdense plasma photocathode wakefield accelerators: Pathways towards ultrahigh brightness electron beams. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2151). https://doi.org/10.1098/rsta.2018.0182

Nur Hidayah, F. (2022). ANALISIS PEMBEBANAN TERHADAP PANJANG GELOMBANG CAHAYA BERBASIS SENSOR FIBER BRAGG GRATING (FBG).

Patra, K., & Kanta Barpanda, N. (2016). ENHANCING TRANSMISSION PERFORMANCE OF FIBER OPTIC LINK USING FIBER BRAGG GRATING FOR EFFECTIVE DISPERSION COMPENSATION. International Journal of Computer Engineering and Applications, X(VII), 83–93. https://www.researchgate.net/publication/340061335

Setiono, A., Ula, R. K., Hanto, D., Widiyatmoko, B., & Purnamaningsih, R. W. (2016). Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement. 030003. https://doi.org/10.1063/1.4941618

Sholikah, M. (2019). ANALISIS GELOMBANG SOLITON MENGGUNAKAN PERSAMAAN KLEIN-GORDON NONLINEAR.

Siahaan, T. F., Saktioto, & Edisar, M. (2015). PENENTUAN GELOMBANG SOLITON PADA FIBER BRAGG GRATING DENGAN MENGGUNAKAN METODE STEP-SPLIT. 2(1).

Yuliawati, L., Budhi, W. S., & Adytia, D. (2019). Numerical Studying of Soliton in the Korteweg-de Vries (KdV) Equation. Journal of Physics: Conference Series, 1127(1). https://doi.org/10.1088/1742-6596/1127/1/012065

Yuliawati, L., Subasita, N., Adytia, D., & Budhi, W. S. (2016). Simulation of obliquely interacting solitary waves with a hard wall by using HAWASSI-VBM and SWASH model. AIP Conference Proceedings, 1707. https://doi.org/10.1063/1.4940832

Zaera, R., Vila, J., Fernandez-Saez, J., & Ruzzene, M. (2018). Propagation of solitons in a two-dimensional nonlinear square lattice. International Journal of Non-Linear Mechanics, 106, 188–204. https://doi.org/10.1016/j.ijnonlinmec.2018.08.002

Zailani, R. (2016). PEMODELAN SISTEM FIBER BRAGG GRATING SENSOR (FBGS) UNTUK MEMANTAU AKTIVITAS JANTUNG DAN TEMPERATUR TUBUH PADA PEMERIKSAAN MAGNETIC RESONANCE IMAGING (MRI).

Downloads

Published

2024-06-21

How to Cite

Ahmad Afif Anderson, Cindy Agnatasya Putri, Indy Diah Rachimza, Rita Maharani, & Muhammad Sahal. (2024). Soliton Light Wave Propagation in Fiber Bragg Grating. Journal of Frontier Research in Science and Engineering, 2(2), 8–14. Retrieved from https://journal.riau-edutech.com/index.php/jofrise/article/view/50