The Use of Fiber Bragg Grating as a Sensor High Accuracy Temperature

Authors

  • Elsya Verina Physics Education, Faculty of Teacher Training and Education, University of Riau, Indonesia
  • Naila Al-Hibbi Physics Education, Faculty of Teacher Training and Education, Riau University, Pekanbaru Indomesia
  • Risya Aqila Afil Physics Education, Faculty of Teacher Training and Education, Riau University, Pekanbaru Indomesia
  • Salsabila Nara Physics Education, Faculty of Teacher Training and Education, Riau University, Pekanbaru Indomesia

Keywords:

Fiber Bragg Grating, optical temperature sensor, Bragg wavelength, thermal sensitivity

Abstract

Accurate temperature monitoring is crucial in various sectors, especially in extreme environments where conventional sensors are often unreliable. Fiber Bragg Grating (FBG) is an optical sensor technology that offers significant advantages, such as high temperature sensitivity, immunity to electromagnetic interference, compact size, high flexibility, and the ability to integrate into multiplexed systems. This article presents a comprehensive literature review discussing the working principle of FBG as a temperature sensor, its physical and optical characteristics, and the challenges in its implementation. FBG works based on the principle of temperature-dependent Bragg wavelength changes through changes in the refractive index and lattice period in the optical fiber core. Its sensitivity to temperature ranges from 6–13 pm/°C and can be increased through modifications such as the attachment of bimetal. Other advantages include high measurement accuracy and durability against harsh environmental conditions. However, the use of FBG still faces obstacles such as high equipment costs, fabrication complexity, and the need to separate the effects of strain and temperature in the measurement. Based on the analysis results, FBG has excellent prospects as a high-accuracy temperature sensor for industrial and advanced technology applications, provided that further development is carried out in terms of efficiency, system integration, and calibration methods.

References

Abang, A., & Abdullah, M. (2015). Development of FBG temperature sensor with improved sensitivity. International Journal of Optics.

Ali, J., & Irawan, D. (2023). Investigation of Optical Properties of Fiber Bragg Grating (FBG). Journal of Frontier Research in Science and Engineering(JoFRISE), 1(1), 28–34. https://journal.riau-edutech.com/index.php/jofrise

Andi Rosman N. (2015). PERANCANGAN SENSOR TEMPERATUR TINGGI BERBASIS FIBER BRAGG GRATING.(FBG) TIPE BIMETAL.

Fadilla, F. D., & Saktioto, S. (2021). Aplikasi Sistem Sensor Fiber Bragg Grating Untuk Pendeteksian Simulasi Denyut Jantung. Komunikasi Fisika Indonesia, 18(2), 151. https://doi.org/10.31258/jkfi.18.2.151-158

Fauza, N. (2025). The Influence of Dielectric Space on Materials Capacitance of Capacitor. Journal of Frontier Research in Science and Engineering (JoFRISE), 3(1), 33–38.

Fidanboylu, K., & Efendioglu, H. S. (2009). Fiber optic sensors and their applications. Journal of Polytechnic, 12(1), 10–16.

Hairi, H., & Meyzia, B. (2023). The Use of Tapered FBG Sensor for Characterizing Carbon Dioxide Gas. Journal of Frontier Research in Science and Engineering, 1(1), 1–7.

Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15(8), 1263–1276. https://doi.org/10.1109/50.618339

Indriani, M. (n.d.). Meilindra Indriani, 2013 Pengaruh Perubahan Suhu Terhadap Unjuk Kerja Fiber Bragg Grating (FBG) Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu 1. 1–4.

Jasim, A. A., & Al-Shehri, S. M. (2018). Review on fiber Bragg grating sensors. Journal of Sensors.

Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., ... & Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442–1463. https://doi.org/https://doi.org/10.1109/50.618884

Kustianto, I., Purnamaningsih, R. W., Rahardjo, S., Hamidah, M., & Firdaus, M. Y. (2023). Water Temperature Measurement Using Fiber Bragg Grating. Jurnal Penelitian Pendidikan IPA, 9(11), 9341–9345. https://doi.org/10.29303/jppipa.v9i11.3972

Majumder, M., Gangopadhyay, T. K., Chakraborty, A. K., Dasgupta, K., & Bhattacharya, D. K. (2008). Fibre Bragg gratings in structural health monitoring—Present status and applications. Sensors and Actuators A: Physical, 147(1), 150–164. https://doi.org/10.1016/j.sna.2008.06.014

Measures, R. M. (2001). Structural monitoring with fiber optic technology. Academic Press.

Molardi, C. et al. (2019). Fiber Bragg grating (FBG) sensors in a high-scattering optical fiber doped with MgO nanoparticles for polarization-dependent temperature sensing. Applied Sciences, 9(15), 3107.

Nasir, M. (2023). A Review of Optical Loss in Various Optical Fiber Connector. Journal of Frontier Research in Science and Engineering(JoFRISE), 1(1), 13–20. https://journal.riau-edutech.com/index.php/jofrise

Nasrulloh, N., Syahriar, A., & Prasetyono, R. N. (2021). Pengaruh Sensitivitas Suhu Dengan Metode Couple-Mode Terhadap Fiber Bragg Grating Fiber Optik. Avitec, 3(2), 139. https://doi.org/10.28989/avitec.v3i2.926

Nuras. (2020). Kupas Tuntas Serat Kisi Bragg (Fiber Bragg Grating). In Universitas Gadjah Mada.

Purbowaskito, W., & Handoyo, R. (2017). Perancangan Alat Penghitung Benih Ikan Berbasis Sensor Optik. Jurnal Rekayasa Mesin, 8(3).

Putri, S. E., & Harmadi, H. (2017). Rancang Bangun Sistem Pengukuran Frekuensi Getaran Akustik pada Speaker Piezoelektrik Menggunakan Sensor Serat Optik. Jurnal Fisika Unand, 6(1), 47–52.

Rao, Y.-J. (1997). In-fibre Bragg grating sensors. Measurement Science and Technology, 8(4), 355–375. https://doi.org/10.1088/0957-0233/8/4/002

S. Singh et al. (2021). Optical Fiber Based Temperature Sensors: A Review. Photonics, 4.

Saptadi, A. H. (2014). Perbandingan akurasi pengukuran suhu dan kelembaban antara sensor DHT11 dan DHT22. Jurnal Infotel, 6(2), 49–56.

Siddiq, N. A. (2020). Kupas Tuntas Serat Kisi Bragg (Fiber Bragg Grating).

Suzairi Daud and Jalil Ali. (2018). Fibre Bragg Grating and No-Core Fibre Sensors.

Tempsens. (n.d.). Fiber Bragg Grating Based Sensors.

Urbach, T. U., & Wildian, W. (2019). Rancang Bangun Sistem Monitoring dan Kontrol Temperatur Pemanasan Zat Cair Menggunakan Sensor Inframerah MLX90614. Jurnal Fisika Unand, 8(3), 273–280.

Widasari, E. R., Pramono, S. H., & Purnomo, M. F. E. (2013). Analisis Penerapan Optical Add-Drop Multiplexer (OADM) Menggunakan Fiber Bragg Grating (FBG) pada Teknik Dense Wavelength Division Multiplexing (DWDM). Jurnal MahasiswaTEUB, 1(2).

Yassin, M. H., Hussein, M., Reza, F., & Michel, S. (2024). Discover Civil Engineering Fiber Bragg grating ( FBG )‑ based sensors : a review of technology and recent applications in structural health monitoring ( SHM ) of civil engineering structures. In Discover Civil Engineering. Springer International Publishing. https://doi.org/10.1007/s44290-024-00141-4

Zhou, K., Wei, L., & Cheng, S. (2008). Temperature sensing characteristics of uniform and chirped fiber Bragg gratings. Optics Communications, 281(6), 1570–1574.

Downloads

Published

2025-09-27

How to Cite

Elsya Verina, Naila Al-Hibbi, Risya Aqila Afil, & Salsabila Nara. (2025). The Use of Fiber Bragg Grating as a Sensor High Accuracy Temperature. Journal of Frontier Research in Science and Engineering, 3(3), 8–15. Retrieved from https://journal.riau-edutech.com/index.php/jofrise/article/view/144

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.