BAND GAP ENERGY CHARACTERISTICS IN MATERIALS

Authors

  • Dian Dwirianti Physics Education, Faculty of Teacher Training and Education, University of Riau, Indonesia

Keywords:

Band gap energy, semiconductor,, direct band gap, indirect band gap, LED, conductor, Iulator

Abstract

Band gap energy is one of the most fundamental parameters in
determining the electronic and optoelectronic properties of a material. The band
gap value is a measure of the energy jump that electrons must make in order to
actively conduct electricity. The greater the band gap value, the greater the energy
required by electrons to conduct electricity.
The difference in band gap values in various materials affects the ability of the
material to conduct electricity or interact with light. Therefore, understanding the
characteristics of band gap energy is very important in the development of various
devices such as semiconductors, photovoltaics, optical sensors, and light-emitting
diodes (LEDs). This article examines the differences in band gap characteristics
in three main types of materials: conductors, semiconductors, and insulators. In
conductors, the band gap does not exist or is very small, allowing electrons to
move freely. Insulators have a very large band gap so they do not conduct
electricity. Semiconductors are in between and have high flexibility to be modified
through doping, structural engineering, and external field applications. The main
focus is given to semiconductors because of their very large role in modern
electronic and optoelectronic devices. The fundamental differences between
direct and indirect band gaps are also discussed. Materials with direct band gaps
such as GaAs or InGaN are very suitable for LED applications because they allow
efficient light emission without the help of phonons. Meanwhile, materials such
as silicon with indirect band gaps tend to be unsuitable for LEDs because their
photon emission efficiency is low. With proper understanding and engineering of
band gap characteristics, the performance of devices such as LEDs can be
significantly improved, both in terms of light efficiency, stability, and the range of
wavelengths produced.

References

Choudhury, I. A., & Shirley, S. (2010). Laser cutting of polymeric materials: An experimental investigation. Optics &

Laser Technology, 42(3), 503–508. https://doi.org/10.1016/j.optlastec.2009.08.017

Dubey, A. K. (2009). Laser beam machining: A review. International Journal of Machine Tools and Manufacture, 48(6), 609–

628.

Eilers, S., et al. (2020). Laser dalam dermatologi. Dalam Rahasia Dermatologi (ed. ke-6). Elsevier Health Sciences.

https://shop.elsevier.com/books/dermatology-secrets/high/978-0-323-67323-5

Gupta, M., & Jain, V. K. (2014). Laser machining: Theory and practice. Springer.

Harjono, T. (2020). Pemanfaatan Teknologi Laser untuk Industri dan Medis. Bandung: Citra Ilmu.

Hasanah, N. (2023). Metodologi Penelitian Kualitatif dalam Ilmu Kesehatan. Yogyakarta: Gadjah Mada University Press.

Helvajian, H. (2008). Microengineering aerospace systems. AIAA.

Huang, Y., & Zhang, H. (2018). Advances in laser microfabrication for biomedical devices. Micromachines, 9(5), 234.

https://doi.org/10.3390/mi9050234

Iemz, M. H. (2007). Laser-tissue interactions: Fundamentals and applications (3rd ed.). Springer.

Prabowo KA, A. and Ambarini, R. (2022) ‘Code Switching and Its Implications for Teaching in the English Language

in Math Lessons by Early Childhood Education Teachers’, KnE Social Sciences [Preprint], (January). Available

at: https://doi.org/10.18502/kss.v7i19.12428.

Prakoso, R.P., Wahyudi, E. and Masykuroh, K. (2021) ‘Optimalisasi Bit Error Rate (BER) Jaringan Optik Hybrid Pada

Sistem DWDM Berbasis Soliton’, Journal of Telecommunication, Electronics, and Control Engineering (JTECE), 3(2),

pp. 62–70. Available at: https://doi.org/10.20895/jtece.v3i2.320.

Retna Apsari, Noriah Bidin, S. (2008) ‘Performance of Holography Interferometer Based on Optical Reconstruction

as Alternative Dental Imaging for Artificial Tooth Morphology’.

Sahelay, A., Ahirwal, R. and Jain, Y.K. (2012) ‘Timer-Based Location Management to Improve Hit Ratioin Cellular

Network Using Cache Memory’, International Journal of Information and Education Technology, 2(5), pp. 494–497.

Available at: https://doi.org/10.7763/ijiet.2012.v2.188.

Saleh, H., Hany, M. and Aly, M.H. (2010) ‘AFBG for dispersion compensation in transmission: effect of parameters

of the two beam interference fringe technique’, Photonics North 2010, 7750, p. 77502A. Available at:

https://doi.org/10.1117/12.871388.

Saputra, N., Ripai, A. and Abdullah, Z. (2022) ‘The Bilinear Formula in Soliton Theory of Optical Fibers’, Jurnal Fisika

Unand, 11(3), pp. 387–392. Available at: https://doi.org/10.25077/jfu.11.3.387-392.2022.

Shahadatul Aini Binti Zainudin, M. (2012) ‘Characteristics of Solitary Wave in Fiber Bragg Grating’.

Siahaan, T.F. (2015) ‘Penentuan Gelombang Soliton Pada Fiber Bragg Grating Dengan Menggunakan Metode Step-

Split’, Jom Fmipa, 2(1), pp. 212–218.

Sukmayadi, D. (2014) ‘PENELITIAN FUNDAMENTAL LAPORAN EVALUASI DIRI PROGRAM STUDI’, pp.

1–43.

Yasin, M. (2016) ‘Pengembangan Teknologi Sensor Serat Optik untuk Menuju Kemandirian Bangsa’, Airlangga

University Press, pp. 1–64.

Zen, F.P., Hidayat, W. and Shiddiq, R. (2002) ‘Analisis Numerik Propagasi Soliton Dalam Serat Optik’, Kontribusi

Fisika Indonesia, 13(2), pp. 114–120.

Zulfitri (2022) ‘Analisis penggunaan dompet digital aplikasi dana dalam transaksi sehari-hari pada mahasiswa prodi

pendidikan teknologi informasi uin ar-raniry banda aceh’, Skripsi, UIN Ar-Raniry Darussalam Banda Aceh, pp.

1–79. Available at: https://repository.ar-raniry.ac.id/id/eprint/29841/1/Zulfitri, 150212107, FTK,

PTI.pdf.

Akbar, A. I., Zulfahrizal, Z., & Munawar, A. A. (2017). Desain dan uji performansi instrument berbasis teknologi laser

photo-acoustics untuk uji cepat kualitas mangga. Jurnal Ilmiah Mahasiswa Pertanian, 2(3), Artikel 3.

https://doi.org/10.17969/jimfp.v2i3.3720

Alif, F. S. N. (2024). Pembuatan dan karakterisasi tube sebagai bahan baku stent jantung dengan pemesinan berbasis laser marking

[Skripsi, Universitas Islam Indonesia]. https://dspace.uii.ac.id/handle/123456789/54344

Anders, C., & Schmitt, R. (2013). Precision laser cutting in biomedical engineering. Journal of Biomedical Science and

Engineering, 6(10), 1056–1063. https://doi.org/10.4236/jbise.2013.610129

Anwar, R. (2023). Teknologi Laser dalam Rekayasa Biomedis Modern. Jakarta: BioMedika Press.

Basak, A. K., & Bhattacharya, S. (2017). Laser technology and its application in medical science. International Journal of

Medical Engineering and Informatics, 9(2), 134–148. https://doi.org/10.1504/IJMEI.2017.084834

Brown, E. R. (2020). Dasar-dasar laser dan perangkat cahaya dalam dermatologi. Pengantar praktis untuk dermatologi laser.

https://doi.org/10.1007/978-3-030-46451-6_1

Downloads

Published

2025-06-30

How to Cite

Dian Dwirianti. (2025). BAND GAP ENERGY CHARACTERISTICS IN MATERIALS. Journal of Frontier Research in Science and Engineering, 3(2), 36–44. Retrieved from https://journal.riau-edutech.com/index.php/jofrise/article/view/131

Similar Articles

You may also start an advanced similarity search for this article.