Use of Optical Tweezers Sensor in Communication

Authors

  • Rahmi Hidayah
  • Aulia Asmafatih Physics Education, Faculty of Teacher Training and Education, Universitas Riau
  • Cahaya Lestari S. Physics Education, Faculty of Teacher Training and Education, Universitas Riau
  • Fitri Salsabila Physics Education, Faculty of Teacher Training and Education, Universitas Riau
  • Dzaidatul Masyhural Physics Education, Faculty of Teacher Training and Education, Universitas Riau
  • Haryana Hairi Department of Physics, Faculty of Applied Scince, Universiti Teknologi Mara, Johor Malaysia

Keywords:

communication, sensor, optical tweezer

Abstract

The use of optical tweezers sensors in communication has become a topic of research that attracts attention, because optical tweezers sensors are the latest thing that appears in today's technological and sophisticated era. Optical tweezers are a means of manipulating objects with light. The application of optical tweezers sensors in communication is by way of manipulation of small light particles that can be used in optical sensor technology. Optical sensors in communication are applied to the use of optical tweezers sensors that are used to monitor and control particles or impurities contained in optical fibers to transmit optical signals. Optical tweezers consist of a laser beam focused on a group of particles with a refractive index exceeding the surrounding medium. The working principle of optical twezeers in communication is through a laser beam passing through an object, so that it deflects and changes direction and changes its momentum focused on a high-quality microscope object to a point in its field.

References

Erkamim, M., &; Sudipa, I. G. I. (2023). Implementation of Analytic Hierarchy Process Method for Land Selection of Oil Palm A. Ashkin et.al. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11, No. 5, 288-290.

Abbott, B. P., Abbott, R., Abbott, T. D., Abbott, R., Abbott, T. D., Acernese, F., Rubinsztein-dunlop, H., Pesce, G., Stilgoe, A. B., Volpe, G., Tkachenko, G., Truong, V. G., Chormaic, S. N., Kalantarifard, F., Elahi, P., Käll, M., Callegari, A., Ndukaife, J. C., Quidant, R., ... Jr, G. A. S. (2023). Roadmap for optical tweezers OPEN ACCESS.

Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), 288. https://doi.org/10.1364/OL.11.000288

Bustamante, C. J., Chemla, Y. R., Liu, S., & Wang, M. D. (2021). Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers, 1(1). https://doi.org/10.1038/s43586-021-00021-6

Carvalho, I. A., Silva, N. A., Rosa, C. C., Coelho, L. C. C., & Jorge, P. A. S. (2021). Particle classification through the analysis of the forward scattered signal in optical tweezers. Sensors, 21(18), 1–12. https://doi.org/10.3390/s21186181

Dee Unglaub Silverthorn. (2013). Human Physiology: An Integrated Approach (6th editio). Pearson Education.

Idachaba, F., Ike, D. U., & Hope, O. (2014). WCE2014 pp438-442. World Congress on Engineering, I, 2–6.

Kalantarifard, F., Elahi, P., Makey, G., Maragò, O. M., Ilday, F. Ö., & Volpe, G. (2019). Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Nature Communications, 10(1), 2683. https://doi.org/10.1038/s41467-019-10662-7

Kužela, T., Burdík, M., Kaloda, P., Kalodová, K., Fojtů, D., Elisek, P., Hrnčiřík, J., Jašek, R., & Ingr, M. (2024). Optical trapping of polystyrene beads in mixed solvents. Optics and Lasers in Engineering, 176, 108059. https://doi.org/https://doi.org/10.1016/j.optlaseng.2024.108059

Maia Neto, P. A., & Nussenzveig, H. M. (2000). Theory of optical tweezers. Europhysics Letters, 50(5), 702–708. https://doi.org/10.1209/epl/i2000-00327-4

Malinowska, A. M., van Mameren, J., Peterman, E. J. G., Wuite, G. J. L., & Heller, I. (2024). Introduction to Optical Tweezers: Background, System Designs, and Applications (pp. 3–28). https://doi.org/10.1007/978-1-0716-3377-9_1

Optical Tweezers. (2018). In Micromechanical Photonics (pp. 81–120). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31372-4_3

Pesce, G., Jones, P. H., Maragò, O. M., & Volpe, G. (2020a). Optical tweezers: theory and practice. The European Physical Journal Plus, 135(12), 949. https://doi.org/10.1140/epjp/s13360-020-00843-5

Pesce, G., Jones, P. H., Maragò, O. M., & Volpe, G. (2020b). Optical tweezers: theory and practice (Vol. 123).

Salsabilla, L. P. (2023). Maintenance and repair of optical cables in the Bekasi network area by Sto Telkom Juanda. https://repository.pnj.ac.id/id/eprint/10482/1/LudwiniaPutriSalabilla_BM8B_LapMagang.pdf

Simmons, R. M., Finer, J. T., Chu, S., & Spudich, J. A. (1996). Quantitative measurements of force and displacement using an optical trap. Biophysical Journal, 70(4), 1813–1822. https://doi.org/10.1016/S0006-3495(96)79746-1

Steven, B. (2020). An introduction to optical tweezers. Block Lab at Stanford University. https://blocklab.stanford.edu/optical_tweezers.html

Xin, H., Li, Y., Liu, Y., Zhang, Y., Xiao, Y., & Li, B. (2020). Optical Forces: From Fundamental to Biological Applications. Advanced Materials, 32(37). https://doi.org/10.1002/adma.202001994

Yanuary, T. H., & Lidyawati, L. (2018). Analysis of Fiber Optic Splicing Link Budget Using Optical Time Domain Reflectometer AQ7275. Journal of Electrical Engineering, 10(1), 36–40. https://doi.org/10.15294/jte.v10i1.13996

Yusro, M., & Diamah, A. (2019). Theoretical and Applied Sensors and Transducers. In Jakarta State University.

Zhu, R., & Avsievich, T. (2020). Optical Tweezers in Studies of Red Blood Cells. 1–27. https://doi.org/10.3390/cells9030545

Downloads

Published

2024-06-21

How to Cite

Rahmi Hidayah, Aulia Asmafatih, Cahaya Lestari S., Fitri Salsabila, Dzaidatul Masyhural, & Haryana Hairi. (2024). Use of Optical Tweezers Sensor in Communication. Journal of Frontier Research in Science and Engineering, 2(2), 26–34. Retrieved from https://journal.riau-edutech.com/index.php/jofrise/article/view/53