Polarization Characteristics of Electromagnetic Wave in Optical Fibers

Authors

  • Muhammad Sahal Department of Physics Education, PMIPA, FKIP Universitas Riau, Pekanbaru Indonesia
  • Ernidawati Department of Physics Education, PMIPA, FKIP Universitas Riau, Pekanbaru Indonesia
  • Naila Fauza Department of Physics Education, PMIPA, FKIP Universitas Riau, Pekanbaru Indonesia

Keywords:

Fiber Optic, wave polarization, light waves, liquid crystal-based sensor

Abstract

This article goes into the details of optical fiber technology, focusing on important things like wave polarization, light waves, and the innovative use of liquid crystal-based fiber optic sensors. We start with the basics of polarization and how light waves work. Then, we dive into the world of optical fiber technology, which is crucial for how we communicate today. We specially focus on wave polarization inside these fibers, explaining why it matters for sending signals smoothly. Imagine these fibers as tiny tunnels where light waves travel, and how they're oriented, or polarized, affects how well the signals go through. Next, we explore liquid crystal-based fiber optic sensors, which are a cool advancement. These sensors use special liquid crystals to notice changes in their surroundings. We look at how they're designed and where they're used, like in keeping an eye on the environment and helping with medical diagnostics. By mixing simple explanations with real-world examples, this article aims to help both curious readers and professionals understand the basics and practical applications of optical fiber technology in our everyday communication systems

References

Ananto, B. (2011). Simulasi Perambatan Cahaya Pada Serat Optik. Jurnal Teknik Elektro Fakultas Teknik Universitas Diponegoro, 1–9.

Ayu, D. F. (2019). Gelombang Optik Polarisasi.

Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185–200. https://doi.org/https://doi.org/10.1006/jcph.1994.1159

Bérenger, J.-P. (2007). Perfectly Matched Layer (PML) for Computational Electromagnetics. Springer International Publishing. https://doi.org/10.1007/978-3-031-01696-7

Cahyaningsih, T. (2021). Rancang Bangun Alat Peraga Polarisasi Cahaya Dalam Pembelajaran Fisika Di Sekolah Menengah Kejuruan. CSRID Journal, 13(3), 306–315. https://doi.org/http://dx.doi.org/10.22303/csrid.13.3a.2021.306-315

Deswita, P., & Saputri, R. H. (2021). Revolusi Saintifik dalam Perkembangan Ilmu Optika. Natural Science: Jurnal Penelitian Bidang IPA Dan Pendidikan IPA, 7(2), 138–150. https://doi.org/10.15548/nsc.v7i2.3028

Engquist, B., & Majda, A. (1977). Absorbing Boundary Conditions for the Numerical Simulation of Waves. Mathematics of Computation, 31(139), 629. https://doi.org/10.2307/2005997

Firdausi, K. S., Simbolon, N., & Sugito, H. (2017). Polarisasi Fluoresens Untuk Evaluasi Mutu Minyak Goreng. Jurnal Ilmiah Teknosains, 3(1).

Firdausi, K. S., Suryono, H. S., Amitasari, R., Murni, S., & Putranto, A. B. (2014). A Study of Natural Polarization on Saturated Fatty Acid as most Responsible Parameter for Investigation of Oil Quality Level. Proceedings of International Seminar on New Paradigm and Innovation on Natural Sciences and Its Application (4th Isnpinsa), 28th October, 49–52.

Hecht, J. (2015). Understanding Fiber Optics (Fifth Edit). Lase Light Press.

Iqbal, M., & Trinugroho, A. (2008). Perkembangan Riset Aplikasi Polarization Imaging By Reflection Untuk Objek Transparan Dalam Bidang Computer Vision. Seminar Nasional Aplikasi Teknologi Informasi, 2008(Snati), 21–2008.

Khare, R. P. (2004). Fiber optics and optoelectronics. Oxford University Press.

Laming, R. I., & Payne, D. N. (1989). Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers. Journal of Lightwave Technology, 7(12), 2084.

Lindman, E. L. (1975). “Free-space” boundary conditions for the time dependent wave equation. Journal of Computational Physics, 18(1), 66–78. https://doi.org/https://doi.org/10.1016/0021-9991(75)90102-3

Merewether, D. E. (1971). Transient Currents Induced on a Metallic Body of Revolution by an Electromagnetic Pulse. IEEE Transactions on Electromagnetic Compatibility, EMC-13(2), 41–44. https://doi.org/10.1109/TEMC.1971.303117

Mur, G. (1981). Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations. IEEE Transactions on Electromagnetic Compatibility, EMC-23(4), 377–382. https://doi.org/10.1109/TEMC.1981.303970

Musa. (2017). Perfectly Matched Layer Pada Elektromagnetik. Institut Teknologi.

Namiki, T. (1999). A new FDTD algorithm based on alternating-direction implicit method. IEEE Transactions on Microwave Theory and Techniques, 47(10), 2003–2007. https://doi.org/10.1109/22.795075

Negara, T. P., Yuliawati, L., Garnadi, A. D., Nurdiati, S., & Alatas, H. (2015). Effect of filling-factor and angle of incident on transmittance of a dielectric slab waveguide with metallic grating. AIP Conf. Proc. 1656, 060003. https://doi.org/10.1063/1.4917134

Nugraheny, I., Nurfauzi, W., Fausta, D. E., Supurwoko, & Pambuka, R. N. (2018). Polarisasi Cahaya dan Penentuan Nilai Indeks Bias dengan Metode Sudut Brewster. Jurnal Fisika Dan Aplikasinya, 14(3), 59–62. https://doi.org/10.12962/j24604682.v14i3.3867

Poole, C. D., & Nagel, J. (1997). Polarization Effects in Lightwave Systems. In Optical Fiber Telecommunications IIIA (pp. 114–161). Elsevier. https://doi.org/10.1016/B978-0-08-051316-4.50010-2

Pozar, D. M. (2009). Microwave Engineering, 3Rd Ed (J. W. & Sons (ed.)).

Puja Negara, T., Erniyanti, & Ismangil, A. (2019). Simulasi Gelombang Elektromagnetik Pada Waveguide Menggunakan Metode Finite Difference Time Domain Untuk Aplikasi Radar. Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO AAU), 1(1), 147–154.

Putra, M., Amir, D., & Syamsul, S. (2020). Rancang Bangun Antena Biquad dengan Reflektor Grid Parabolik untuk Mengoptimalkan Gain Antena Pada Frekuensi 450 Mhz. Jurnal TEKTRO, 4(2), 105–112.

Putri Yuppe dkk. (2018). Polarisasi Gelombang Cahaya.

Rivaldo, R., Wijanto, H., & Wahyu, Y. (2018). Rectenna (Rectifier Antenna) 800 MHz-2500 MHz. EProceedings of Engineering, 5(2).

Turner, G. M., & Christodoulou, C. (1999). FDTD analysis of phased array antennas. IEEE Transactions on Antennas and Propagation, 47(4), 661–667. https://doi.org/10.1109/8.768805

Wahyuni, A. S. A. (2018). Konsepsi dan Miskonsepsi Siswa, Mahasiswa Calon Guru, dan Guru pada Topik Cahaya dalam Pembelajaran Fisika. Jurnal Pendidikan Fisika, 6(3), 235–250. https://doi.org/10.26618/jpf.v6i3.1503

Wikara, B. (2012). Konsekuensi Hasil Penelitian Tim Icarus Tentang Kelajuan Neutrino Terhadap Teori Relativitas. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 2(1), 15. https://doi.org/10.26740/jpfa.v2n1.p15-19

Yesiana, Y., Hambali, A., & Rahardjo, S. (2015). Analisis Karakteristik Ring Resonator Tunggal Dengan Menggunakan PMF (Polarization Maintaining Fiber) Untuk Diaplikasikan Sebagai Filter Optik. E-Proceeding of Engineering, 2(2), 2315–2320

Downloads

Published

2023-12-22

How to Cite

Muhammad Sahal, Ernidawati, & Naila Fauza. (2023). Polarization Characteristics of Electromagnetic Wave in Optical Fibers. Journal of Frontier Research in Science and Engineering, 1(1), 21–27. Retrieved from https://journal.riau-edutech.com/index.php/jofrise/article/view/21

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.