Analysis of Electric Field Distribution Patterns of Dipoles in Various Vacuum Mediums and Dielectric Materials

Authors

  • Mutiara Dier Physics Education Study Program, Faculty of Teacher Training and Education/University of Riau, Indonesia
  • Azhar Physics Education, Faculty of Teacher Training and Education, University of Riau, Indonesia

Keywords:

electric field, vacuum media, distribution pattern

Abstract

This study aims to identify the electric field distribution pattern of a dipole in various media, including vacuum and dielectric materials, using a literature review approach. A total of 14 articles published between 2017 and 2024, indexed in Sinta and Scopus, were analyzed. The articles cover various methodologies, such as numerical simulations, experimental studies, and theoretical analyses, focusing on the behavior of the electric field generated by a dipole in different media. The results show that in vacuum, the electric field distribution exhibits ideal radial symmetry with decreasing intensity as the distance increases. In dielectric materials, the polarization effect becomes dominant, causing changes in the field distribution due to the interaction between the dipole and the particles in the medium. A higher dielectric constant in the material tends to increase the local field strength around the dipole, while anisotropic dielectric materials show a more complex distribution pattern due to the directional variation of their material properties. The geometric configuration of the electrodes, material characteristics, and field configuration significantly affect the electric field distribution. These findings have potential practical applications in energy storage systems, electric field sensors, and plasma-based technologies. By understanding the complex field distribution patterns in various media, this study provides valuable insights for optimizing devices that rely on electric fields generated by dipoles. This comprehensive analysis emphasizes the importance of considering the nature of the medium and the material-dipole interaction in improving the performance and efficiency of electric field-based technologies. The results of this study also form the basis for further research to develop technological applications and refine theoretical models of dipole electric fields.

References

Adnan, S. R., Kurniawan, B., & Soegijono, B. (2023). Tinjauan Pengembangan Material Berbasis Barium Titanat, Komposit Pvdf/Batio3 Dan Batio3/Hap Untuk Aplikasi Electrostatic Dielectric Energy Storage Capacitor. Jurnal Rekayasa Mesin, 14(2), 649-676.

Andiani, L., & Utami, A. R. I. (2021). Analisis Pengaruh Diameter Kawat terhadap Distribusi Kapasitansi dari Wire Mesh Sensor: Studi Kasus Simulasi Sistem Deteksi Anomali pada Saluran Pembuangan Limbah Industri. POSITRON, 11(2), 104-111.

Azam, M. (2017). Simulasi numerik gaya dielektroforesis pada biopartikel berbentuk bola. Youngster Physics Journal, 6(1), 110-114.

Bahri, A. S., Padlilah, M., Widodo, A., Hilyah, A., Purwanto, S., Hardyani, P. V., & Salim, C. (2021). Identifikasi sungai bawah permukaan pada data resistivitas 2D konfigurasi dipole-dipole di Desa Gedompol, Kabupaten Pacitan. Jurnal Geosaintek, 7(3), 125-134.

Hadiningrat, M. S. (2022). Analisis Pengaruh Diameter Kawat terhadap Distribusi Kapasitansi dari Wire Mesh Sensor Tomography menggunakan Convolutional Neural Network. Fountain of Informatics Journal, 7(3), 12-16.

Ilham Panca Kusuma, Y. (2024). DESAIN SENSOR KAPASITIF MODEL KOTAK UNTUK MENGUKUR KETEBALAN LAPISAN CAT PADA SUBSTRAT (Doctoral dissertation, Fakultas Teknik Universitas Sultan Ageng Tirtayasa).

Mujahidin, I., Mara, M. N., Rochmatika, R. A., & Setijasa, H. (2024). Rancang Bangun High Gain-Antena Mikrostrip 2x4 Array untuk Sistem Komunikasi Seluler 5G. Orbith: Majalah Ilmiah Pengembangan Rekayasa dan Sosial, 20(2), 159-166.

Munajib, C., Wardaya, A. Y., Muhlisin, Z., & Gunadi, I. (2022). Analisis Fenomena Elektrohidrodinamik Menggunakan Plasma Lucutan Korona DC Positif dengan Konfigurasi Elektroda Mata Pahat dan Titik Tengah-Bidang pada Minyak Kelapa Sawit. Berkala Fisika, 25(4), 135-143.

Pratama, M. R., Putri, D. S. D., Handoyo, F., & Umiatin, U. (2023, January). ULASAN UMUM: PENERAPAN DIELEKTROFORESIS KONVENSIONAL SEBAGAI METODE IDENTIFIKASI BAKTERI MONOCOCCUS. In PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL) (Vol. 11).

Rismawati, A., & Purwanto, A. (2017). Rancang Bangun Sistem Kontrol Kadar Air Gabah pada Alat Pengering Gabah Berbasis Mikrokontroler ATMEGA 8. Jurnal Ilmu Fisika dan Terapannya (JIFTA), 6(1), 48-56.

Ruswir, A., Darmawan, D., & Fitriyanti, N. (2020). Distribusi Medan Magnet Pada Multikoil Rektangular Secara Simultan Dengan Simulasi Matlab. eProceedings of Engineering, 7(2).

Sagai, F. S., Pandara, D. P., Kolibu, H. S., Tongkukut, S. H. J., Ferdy, F., Tamuntuan, G. H., & Abidjulu, G. (2021). Simulasi Optimasi Suhu dari Sistem Pemanasan Temperatur Tinggi Berbasis Gelombang Mikro. Jurnal MIPA, 11(1), 27-32.

Salsabila, M. (2019). Medan listrik berpulsa untuk menghambat pertumbuhan bakteri Salmonella typhi pada susu sapi murni (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).

Setiana, M., & Ferawati, B. I. (2023). Variasi bentuk elektroda terhadap distribusi plasma yang dihasilkan. Jurnal Teras Fisika: Teori, Modeling, dan Aplikasi Fisika, 6(1), 28-33.

Taufiq, A., Bahtiar, S., Sunaryono, S., Hidayat, N., Fuad, A., Diantoro, M., & Darminto, D. (2018). Kajian Struktur Kristal dan Dielektrisitas Nanopartikel Magnetite Berbasis Pasir Besi Doping Zn2+ Hasil Sintesis Metode Kopresipitasi. Jurnal Sains Materi Indonesia, 13(2), 153-156.

Triastuti, L. (2022). Pengaruh pemaparan sinar LED biru terhadap pertumbuhan bakteri Lysteria monocytogeneses, pH, organoleptik dan vitamin C pada jus apel (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).

Usman, A. A., MASHURI, D., & SI, M. (2019). Penyerap Gelombang Radar Mikrokomposit rGO-Fe3O4 Berbasis Bahan Alam Pada Frekuensi 8-12 GHz (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).

Yuliana, I. (2019). Analisis pengaruh konsentrasi doping tembaga Cu2+ terhadap karakteristik fisis MnO2 sebagai material penyimpan energi (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).

Yunasfi, Y., Mashadi, M., & Yusuf, S. (2017). Sifat Listrik dan Magnetik Lapisan Tipis Nanokomposit Fe-C/Si (100). Metalurgi, 28(2), 89-96.

Zainul, R. (2024). Penggunaan Elektrokimia Pada Desain Elektroda Konduktivitas Tinggi. PT. RajaGrafindo Persada-Rajawali Pers.

Downloads

Published

2025-03-26

How to Cite

Mutiara Dier, & Azhar. (2025). Analysis of Electric Field Distribution Patterns of Dipoles in Various Vacuum Mediums and Dielectric Materials. Journal of Frontier Research in Science and Engineering, 3(1), 14–19. Retrieved from https://journal.riau-edutech.com/index.php/jofrise/article/view/108

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.